什么时候需要考虑做数据切分。

1、能不切分尽量不要切分
  1. 并不是所有表都需要进行切分,主要还是看数据的增长速度。切分后会在某种程度上提升业务的复杂度,数据库除了承载数据的存储和查询外,协助业务更好的实现需求也是其重要工作之一。
  2. 不到万不得已不用轻易使用分库分表这个大招,避免"过度设计""过早优化"。分库分表之前,不要为分而分,先尽力去做力所能及的事情,例如:升级硬件、升级网络、读写分离、索引优化等等。当数据量达到单表的瓶颈时候,再考虑分库分表。
2、数据量过大,正常运维影响业务访问

这里说的运维,指:

  1. 对数据库备份,如果单表太大,备份时需要大量的磁盘IO和网络IO。例如1T的数据,网络传输占50MB时候,需要20000秒才能传输完毕,整个过程的风险都是比较高的
  2. 对一个很大的表进行DDL修改时,MySQL会锁住全表,这个时间会很长,这段时间业务不能访问此表,影响很大。如果使用pt-online-schema-change,使用过程中会创建触发器和影子表,也需要很长的时间。在此操作过程中,都算为风险时间。将数据表拆分,总量减少,有助于降低这个风险。
  3. 大表会经常访问与更新,就更有可能出现锁等待。将数据切分,用空间换时间,变相降低访问压力
3、随着业务发展,需要对某些字段垂直拆分

举个例子,假如项目一开始设计的用户表如下:

id bigint #用户的ID

name varchar #用户的名字

last_login_time datetime #最近登录时间

personal_info text #私人信息

….. #其他信息字段

  • 在项目初始阶段,这种设计是满足简单的业务需求的,也方便快速迭代开发。而当业务快速发展时,用户量从10w激增到10亿,用户非常的活跃,每次登录会更新 last_login_name 字段,使得 user 表被不断update,压力很大。而其他字段:id, name, personal_info 是不变的或很少更新的,此时在业务角度,就要将 last_login_time 拆分出去,新建一个 user_time 表。
  • personal_info 属性是更新和查询频率较低的,并且text字段占据了太多的空间。这时候,就要对此垂直拆分出 user_ext 表了。
4、数据量快速增长
  1. 随着业务的快速发展,单表中的数据量会持续增长,当性能接近瓶颈时,就需要考虑水平切分,做分库分表了。此时一定要选择合适的切分规则,提前预估好数据容量
5、安全性和可用性
  1. 鸡蛋不要放在一个篮子里。在业务层面上垂直切分,将不相关的业务的数据库分隔,因为每个业务的数据量、访问量都不同,不能因为一个业务把数据库搞挂而牵连到其他业务。利用水平切分,当一个数据库出现问题时,不会影响到100%的用户,每个库只承担业务的一部分数据,这样整体的可用性就能提高。
6、索引效率
  1. 随着数据量的增加,通过辅助索引查找的数据越来越多,大部分是需要进行回表操作,不能直接通过辅助索引找到数据,当数据量非常大时,回表查找将会消耗大量的时间,由于MySQL查询优化器是基于cost代价模型来设计的,执行优化器会选择走全表扫描获取数据。

参考链接:

https://www.cnblogs.com/butterfly100/p/9034281.html

0 评论  
添加一条新评论